博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
转:Awesome - Image Classification
阅读量:7013 次
发布时间:2019-06-28

本文共 8723 字,大约阅读时间需要 29 分钟。

 

A curated list of deep learning image classification papers and codes since 2014, Inspired by , and .

 

Background

I believe image classification is a great start point before diving into other computer vision fields, espacially for begginers who know nothing about deep learning. When I started to learn computer vision, I've made a lot of mistakes, I wish someone could have told me that which paper I should start with back then. There doesn't seem to have a repository to have a list of image classification papers like until now. Therefore, I decided to make a repository of a list of deep learning image classification papers and codes to help others. My personal advice for people who know nothing about deep learning, try to start with vgg, then googlenet, resnet, feel free to continue reading other listed papers or switch to other fields after you are finished.

Note: I also have a repository of pytorch implementation of some of the image classification networks, you can check out .

 

Performance Table

For simplicity reason, I only listed the best top1 and top5 accuracy on ImageNet from the papers. Note that this does not necessarily mean one network is better than another when the acc is higher, cause some networks are focused on reducing the model complexity instead of improving accuracy, or some papers only give the single crop results on ImageNet, but others give the model fusion or multicrop results.

  • ConvNet: name of the covolution network
  • ImageNet top1 acc: best top1 accuracy on ImageNet from the Paper
  • ImageNet top5 acc: best top5 accuracy on ImageNet from the Paper
  • Published In: which conference or journal the paper was published in.
ConvNet ImageNet top1 acc ImageNet top5 acc Published In
Vgg 76.3 93.2 ICLR2015
GoogleNet - 93.33 CVPR2015
PReLU-nets - 95.06 ICCV2015
ResNet - 96.43 CVPR2015
PreActResNet 79.9 95.2 CVPR2016
Inceptionv3 82.8 96.42 CVPR2016
Inceptionv4 82.3 96.2 AAAI2016
Inception-ResNet-v2 82.4 96.3 AAAI2016
Inceptionv4 + Inception-ResNet-v2 83.5 96.92 AAAI2016
RiR - - ICLR Workshop2016
Stochastic Depth ResNet 78.02 - ECCV2016
WRN 78.1 94.21 BMVC2016
SqueezeNet 60.4 82.5 arXiv2017()
GeNet 72.13 90.26 ICCV2017
MetaQNN - - ICLR2017
PyramidNet 80.8 95.3 CVPR2017
DenseNet 79.2 94.71 ECCV2017
FractalNet 75.8 92.61 ICLR2017
ResNext - 96.97 CVPR2017
IGCV1 73.05 91.08 ICCV2017
Residual Attention Network 80.5 95.2 CVPR2017
Xception 79 94.5 CVPR2017
MobileNet 70.6 - arXiv2017
PolyNet 82.64 96.55 CVPR2017
DPN 79 94.5 NIPS2017
Block-QNN 77.4 93.54 CVPR2018
CRU-Net 79.7 94.7 IJCAI2018
ShuffleNet 75.3 - CVPR2018
CondenseNet 73.8 91.7 CVPR2018
NasNet 82.7 96.2 CVPR2018
MobileNetV2 74.7 - CVPR2018
IGCV2 70.07 - CVPR2018
hier 79.7 94.8 ICLR2018
PNasNet 82.9 96.2 ECCV2018
AmoebaNet 83.9 96.6 arXiv2018
SENet - 97.749 CVPR2018
ShuffleNetV2 81.44 - ECCV2018
IGCV3 72.2 - BMVC2018
MnasNet 76.13 92.85 arXiv2018
SKNet 80.60 - arXiv2019

 

Papers&Codes

 

VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition.

Karen Simonyan, Andrew Zisserman

  • pdf:
  • code:
  • code:
  • code:

 

GoogleNet

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

  • pdf:
  • code:
  • code:

 

PReLU-nets

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

  • pdf:
  • code:

 

ResNet

Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

  • pdf:
  • code:
  • code:
  • code:
  • code:
  • code:

 

PreActResNet

Identity Mappings in Deep Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

Inceptionv3

Rethinking the Inception Architecture for Computer Vision

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

  • pdf:
  • code:
  • code:

 

Inceptionv4 && Inception-ResNetv2

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi

  • pdf:
  • code:
  • code:
  • code:

 

RiR

Resnet in Resnet: Generalizing Residual Architectures

Sasha Targ, Diogo Almeida, Kevin Lyman

  • pdf:
  • code:
  • code:

 

Stochastic Depth ResNet

Deep Networks with Stochastic Depth

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger

  • pdf:
  • code:
  • code:
  • code:

 

WRN

Wide Residual Networks

Sergey Zagoruyko, Nikos Komodakis

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

SqueezeNet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

GeNet

Genetic CNN

Lingxi Xie, Alan Yuille

  • pdf:
  • code:

 

MetaQNN

Designing Neural Network Architectures using Reinforcement Learning

Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

  • pdf:
  • code:

 

PyramidNet

Deep Pyramidal Residual Networks

Dongyoon Han, Jiwhan Kim, Junmo Kim

  • pdf:
  • code:
  • code:

 

DenseNet

Densely Connected Convolutional Networks

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

  • pdf:
  • code:
  • code:
  • code:
  • code:
  • code:
  • code:
  • code:

 

FractalNet

FractalNet: Ultra-Deep Neural Networks without Residuals

Gustav Larsson, Michael Maire, Gregory Shakhnarovich

  • pdf:
  • code:
  • code:
  • code:

 

ResNext

Aggregated Residual Transformations for Deep Neural Networks

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He

  • pdf:
  • code:
  • code:
  • code:
  • code:
  • code:
  • code:

 

IGCV1

Interleaved Group Convolutions for Deep Neural Networks

Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang

  • pdf:
  • code

 

Residual Attention Network

Residual Attention Network for Image Classification

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

Xception

Xception: Deep Learning with Depthwise Separable Convolutions

François Chollet

  • pdf:
  • code:
  • code:
  • code:
  • code:
  • code:

 

MobileNet

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

PolyNet

PolyNet: A Pursuit of Structural Diversity in Very Deep Networks

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin

  • pdf:
  • code:

 

DPN

Dual Path Networks

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

Block-QNN

Practical Block-wise Neural Network Architecture Generation

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu

  • pdf:

 

CRU-Net

Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks

Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng

  • pdf:
  • code
  • code

 

ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

CondenseNet

CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger

  • pdf:
  • code:
  • code:

 

NasNet

Learning Transferable Architectures for Scalable Image Recognition

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

MobileNetV2

MobileNetV2: Inverted Residuals and Linear Bottlenecks

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

  • pdf:
  • code:
  • code:
  • code:

 

IGCV2

IGCV2: Interleaved Structured Sparse Convolutional Neural Networks

Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi

  • pdf:

 

hier

Hierarchical Representations for Efficient Architecture Search

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu

  • pdf:

 

PNasNet

Progressive Neural Architecture Search

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy

  • pdf:
  • code:
  • code:
  • code:

 

AmoebaNet

Regularized Evolution for Image Classifier Architecture Search

Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le

  • pdf:
  • code:

 

SENet

Squeeze-and-Excitation Networks

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu

  • pdf:
  • code:
  • code:
  • code:
  • code:
  • code:

 

ShuffleNetV2

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

IGCV3

IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks

Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang

  • pdf:
  • code:
  • code:
  • code:

 

MNasNet

MnasNet: Platform-Aware Neural Architecture Search for Mobile

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le

  • pdf:
  • code:
  • code:
  • code:
  • code:

 

SKNet

Selective Kernel Networks

Xiang Li, Wenhai Wang, Xiaolin Hu, Jian Yang

    • pdf:
    • code:

转载于:https://www.cnblogs.com/augustone/p/10627409.html

你可能感兴趣的文章
spring cloud单点登录
查看>>
I.MX6 system.img unpack repack
查看>>
王淮的码农标准
查看>>
Python 上手
查看>>
移动端 图片大小方式
查看>>
POJ 3673:Cow Multiplication
查看>>
利用Socket 客户端---->服务端 传送文件到指定路径,并返回一个友好的回馈...
查看>>
angular路由详解五(辅助路由)
查看>>
重要, 要播放音乐视频等多媒体: 安装fedora23中的多媒体编码器
查看>>
shoususaiBti
查看>>
Ansible
查看>>
程序设计语言理论(lambda 演算,函数式编程) 相关资料
查看>>
第一阶段,建议。
查看>>
POST jpeg upload with AFNetworking
查看>>
CCRD_TOC_2015_EULAR专刊
查看>>
OCM读书笔记(0) - OCM考试(Oracle Certified Master)核心内参
查看>>
Linux设备驱动与整个硬件系统的关系
查看>>
Django时间与时区设置问题
查看>>
道路修建 2(自创题+题解)(From NOI2011)
查看>>
两个JS控件-List和Pager
查看>>